Isaac Scientific Publishing

Theoretical Physics

Strings and Unified Field Theories

Download PDF (481.9 KB) PP. 1 - 6 Pub. Date: March 21, 2017

DOI: 10.22606/tp.2017.21001


  • Mark D. Roberts*
    Flat 44, The Cloisters, 83 London Road, Guildford, GU1 1FY, UK


It is argued that string theory predicts unified field theory rather than general relativity coupled to matter fields. In unified field theory all the objects are geometrical, for strings the Kalb-Ramond matter field is identical to the nonsymmetric part of the metric except that the fields contribute to different sides of the field equations. The dilaton is related to the object of non-metricity.


Asymmetric metric, non-metricity, unified field theory, strings.


[1] Michael A. Clayton, Linearisation Instabilities of the Massive Nonsymmetric Gravitational Theory. Class.Q.Grav13(1996)2851-2864, gr-qc/9603062.

[2] Thibault Damour, Stanley Deser and J. McCarthy, Nonsymmetric Gravity Theories: Inconsistencies and a Cure. Phys.Rev.D47(1993)1541-1556, gr-qc/9207003.

[3] Albert Einstein, A generalization of the relativistic theory of gravitation. Ann.Math.(2)46(1945)578-584.

[4] Albert Einstein & E.G.Strauss, A generalization of the relativistic theory of gravitation II. Ann.Math.47(1946)731-741.

[5] Albert Einstein, A generalized theory of gravitation. Rev.Mod.Phys.20(1948)35-39.

[6] Albert Einstein, The Bianchi identities in the generalized theory of gravitation. Can.J.Math.2(1950)120-128.

[7] Albert Einstein & B.Kaufman, A new form of the general relativistic field equations. Ann.Math.62(1955)128- 138.

[8] Abraham Giannopoulos, Generalized Torsion and Curvature. Class.Q.Grav.8(1991)571-582,Errata 13(1996)1278.

[9] Hubert F. M. Goenner, On the History of Unified Field Theories. Living Rev. Relativity7(2004)2.

[10] Richard T. Hammond, Torsion gravity, the Brans-Dicke type generalization and string theory. Math.Rev.97d:83090 Class.Q.Grav.13(1996)L73-L79.

[11] Tomas Janssen and Tomislav Prokopec, Instabilities in the nonsymmetric theory of gravitation. gr-qc/0604094

[12] Michael Kalb and Pierre Ramond, Classical direct interstring action. Phys.Rev.D9(1974)2273-2284.

[13] John W. Moffat, Nonsymmetric Gravitational Theory. Phys.Lett.335(1995)447-452. gr-qc/9411006.

[14] J.A. Nieto and José Socorro, Is nonsymmetric gravity related to string theory? hep-th/9610160.

[15] Thanu Padmanabhan, From Gravitons to Gravity: Myths and Reality. gr-qc/0409089.

[16] Achille Papapetrou, Static Sperically Symmetric Solution in the Unified Field Theory, Math.Rev. 0029311 Proc.Roy.Irish Acad Sci.A52(1948)69-86

[17] Wolfgang Pauli, Theory of Relativity (Pergamon Press, Oxford 1958), supplementary note no.23.

[18] Mark D. Roberts, Non-metric Mass. Il Nuovo Cimento B.119B(2005)1015-1040, gr-qc/9812091.

[19] Mark D. Roberts, Is spacetime non-metric? 0706.4043.

[20] J.Scherk and J.H.Schwarz, Dual models and the geometry of space-time. Phys.Lett.B52(1974)347-358.

[21] J.A. Schouten (1954), p.179, Ricci Calculus, Second Edition, Springer Verlag, Berlin-Gottingen-Heidelberg. Math.Rev.16,521.

[22] Erwin Schr?dinger, Spacetime Structure CUP.

[23] Soumitra SenGupta and Saurabh Sur, Spherically symmetric solutions of gravitational field equations in Kalb-Ramond background. Phys.Lett.B521(2001)350-356.

[24] Hermann Weyl, Naturwissenschaften38(1951)73.

[25] Barton Zwiebach, Introduction to String Theory. CUP Math.Rev. 2005e:81204