Isaac Scientific Publishing

International Journal of Power and Energy Research

Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack

Download PDF (4476.4 KB) PP. 20 - 40 Pub. Date: April 25, 2017

DOI: 10.22606/ijper.2017.11003

Author(s)

  • Simon Lennart Sahlin*
    Department of Energy Technology, Aalborg Universitet, AAU, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark
  • Samuel Simon Araya

    Department of Energy Technology, Aalborg Universitet, AAU, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark
  • Søren Juhl Andreasen

    Department of Energy Technology, Aalborg Universitet, AAU, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark
  • Søren Knudsen Kær

    Department of Energy Technology, Aalborg Universitet, AAU, Pontoppidanstræde 111, 9220 Aalborg Øst, Denmark

Abstract

This paper presents an experimental characterization of a high temperature proton exchange membrane fuel cell (HT-PEMFC) short stack carried out by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate-operated stack. Polarization curves were also recorded to complement the impedance analysis of the researched phenomena. An equivalent circuit model was used to estimate the different resistances at varying parameters. It showed a significantly higher low frequency resistance at lower stoichiometry. Both anode and cathode stoichiometric ratio had significant effects on the stack performance during the dry hydrogen and reformate operation modes. In both cases the effects faded away when sufficient mass transport was achieved, which took place at λanode = 1.3 for dry hydrogen, λanode = 1.6 for reformate operation and λcathode = 4. The work also compared dry hydrogen, steam reforming and autothermal reforming gas feeds at 160℃ and showed appreciably lower performance in the case of autothermal reforming at the same stoichiometry, mainly attributable to mass transport related issues. In a CO poisoning analysis the stack showed good tolerance to concentration up to 1% CO in the fuel stream.

Keywords

HTPEM, electrochemical impedance spectroscopy, fuel cell, degradation.

References

[1] D. Aili, T. Allward, S. M. Alfaro, C. Hartmann-Thompson, T. Steenberg, H. A. Hjuler, Q. Li, J. O. Jensen, and E. J. Stark, “Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells,” Electrochimica Acta, vol. 140, pp. 182–190, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.electacta.2014.03.047

[2] S. J. Andreasen, J. R. Vang, and S. K. K?r, “High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy,” International Journal of Hydrogen Energy, vol. 36, no. 16, pp. 9815–9830, aug 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360319911009414

[3] S. S. Araya, S. J. Andreasen, and S. K. K?r, “Experimental characterization of the poisoning effects of methanol-based reformate impurities on a PBI-based high temperature PEM fuel cell,” Energies, vol. 5, no. 12, pp. 4251–4267, Oct. 2012. [Online]. Available: http://www.mdpi.com/1996-1073/5/11/4251/http://www.mdpi.com/1996-1073/5/11/4251/pdfhttp: //www.scopus.com/inward/record.url?eid=2-s2.0-84868606449&partnerID=tZOtx3y1

[4] S. Authayanun, K. Im-orb, and A. Arpornwichanop, “A review of the development of high temperature proton exchange membrane fuel cells,” Chinese Journal of Catalysis, vol. 36, no. 4, pp. 473–483, Apr. 2015. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1872206714602722

[5] M. Boaventura and A. Mendes, “Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes,” International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 11 649–11 660, Oct. 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0360319910006555

[6] S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-t. Lau, and J. H. Lee, “Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges,” Progress in Polymer Science, vol. 36, no. 6, pp. 813–843, Jun. 2011. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0079670011000256

[7] A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingram, and W. Bujalski, “High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) aAS A review,” Journal of Power Sources, vol. 231, pp. 264–278, Jun. 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0378775312018113

[8] M. K. Daletou, J. K. Kallitsis, G. Voyiatzis, and S. G. Neophytides, “The Interaction of Water Vapors with H3PO4 Imbibed Electrolyte Based on PBI/polysulfone Copolymer Blends,” Journal of Membrane Science, vol. 326, no. 1, pp. 76–83, 2009.

[9] M. K. Daletou, J. Kallitsis, and S. G. Neophytides, Interfacial Phenomena in Electrocatalysis, ser. Modern Aspects of Electrochemistry, C. G. Vayenas, Ed. New York, NY: Springer New York, 2011, vol. 51. [Online].Available: http://link.springer.com/10.1007/978-1-4419-5580-7

[10] J.-L. Dellis, “z-Fit for Matlab.” [Online]. Available: https://se.mathworks.com/matlabcentral/fileexchange/ 19460-zfit

[11] B. Du, R. Pollard, J. F. Elter, and M. Ramani, “Performance and Durability of a Polymer Electrolyte Fuel Cell Operating with Reformate: Effects of CO, CO2, and Other Trace Impurities,” Polymer Electrolyte Fuel Cell Durability, pp. 341–366, 2009. [Online]. Available: http://dx.doi.org/10.1007/978-0-387-85536-3_17

[12] Y. Ferng, A. Su, and J. Hou, “Parametric investigation to enhance the performance of a PBI-based high-temperature PEMFC,” Energy Conversion and Management, vol. 78, pp. 431–437, Feb. 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0196890413007048

[13] S. Galbiati, A. Baricci, A. Casalegno, G. Carcassola, and R. Marchesi, “On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid,” International Journal of Hydrogen Energy, vol. 37, no. 19, pp. 14 475–14 481, Oct. 2012. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0360319912016096

[14] J. Hu, H. Zhang, Y. Zhai, G. Liu, and B. Yi, “500h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC,” International Journal of Hydrogen Energy, vol. 31, no. 13, pp. 1855–1862, Oct. 2006.

[15] T. Iwasita, “Methanol and CO electrooxidation,” in Handbook of Fuel Cells - Fundamentals, Technology, and Applications, 2003, vol. 2, pp. 603–624.

[16] J. L. Jespersen, E. Schaltz, and S. K. K?r, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell,” Journal of Power Sources, vol. 191, no. 2, pp. 289–296, jun 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378775309002742

[17] S. Kaserer, C. Rakousky, J. Melke, and C. Roth, “Design of a reference electrode for high-temperature PEM fuel cells,” Journal of Applied Electrochemistry, vol. 43, no. 11, pp. 1069–1078, May 2013. [Online]. Available: http://link.springer.com/10.1007/s10800-013-0567-9

[18] M. S. Kondratenko, M. O. Gallyamov, and A. R. Khokhlov, “Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy,” International Journal of Hydrogen Energy, vol. 37, no. 3, pp. 2596–2602, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ijhydene.2011.10.087

[19] A. R. Korsgaard, M. P. Nielsen, M. Bang, and S. K. K?r, “Modeling of CO influence in PBI electrolyte PEM fuel cells,” in Proceedings of the 4th International ASME Conference on Fuel Cell Science, Engineering and Technology. ASME Press, 2006.

[20] J.-h. Lee, J.-H. Lee, W. Choi, K.-W. Park, H.-Y. Sun, and J.-H. Oh, “Development of a method to estimate the lifespan of proton exchange membrane fuel cell using electrochemical impedance spectroscopy,” Journal of Power Sources, vol. 195, no. 18, pp. 6001–6007, Sep. 2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0378775310003137

[21] Q. Li, R. He, J.-A. Gao, J. O. Jensen, and N. J. Bjerrum, “The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200?rC,” Journal of The Electrochemical Society, vol. 150, no. 12, p. A1599, Dec. 2003. [Online]. Available: http://jes.ecsdl.org/content/150/12/A1599.full

[22] Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, “High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells,” Progress in Polymer Science, vol. 34, no. 5, pp. 449 – 477, 2009.

[23] H. Liu, P. Li, A. Hartz, and K. Wang, “Effects of geometry/dimensions of gas flow channels and operating conditions on high-temperature PEM fuel cells,” International Journal of Energy and Environmental Engineering, Nov. 2014. [Online]. Available: http://link.springer.com/10.1007/s40095-014-0153-x

[24] V. P. McConnell, “High-temperature PEM fuel cells: Hotter, simpler, cheaper,” Fuel Cells Bulletin, vol. 2009, no. 12, pp. 12–16, Dec. 2009. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/ S1464285909704110

[25] M. M. Mench, E. C. Kumbur, T. N. Veziroglu, and S. S. Kocha, Polymer Electrolyte Fuel Cell Degradation. Elsevier, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B978012386936410003X

[26] B. Najafi, A. Haghighat Mamaghani, A. Baricci, F. Rinaldi, and A. Casalegno, “Mathematical modelling and parametric study on a 30?akWel high temperature PEM fuel cell based residential micro cogeneration plant,” International Journal of Hydrogen Energy, vol. 40, no. 3, pp. 1569–1583, Jan. 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360319914032273

[27] M. Orazem and B. Tribollet, Electrochemical impedance spectroscopy. Wiley-Interscience, 2008, vol. 48. [Online]. Available: http://books.google.com/books?hl=en&lr=&id=AEwQuNTZZ-MC&oi= fnd&pg=PR15&dq=Electrochemical+Impedance+Spectroscopy&ots=BObQhI_2NH& sig=FOgZf4Y-r9UfcRHsuxVXf9pg6Sc

[28] A. Orfanidi, M. K. Daletou, L. Sygellou, and S. G. Neophytides, “The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells,” Journal of Applied Electrochemistry, vol. 43, no. 11, pp. 1101–1116, Oct. 2013. [Online]. Available: http://link.springer.com/10.1007/s10800-013-0626-2

[29] M. Pérez-Page and V. Pérez-Herranz, “Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy,” International Journal of Hydrogen Energy, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360319913013530

[30] T. Romero-Casta?ón, L. Arriaga, and U. Cano-Castillo, “Impedance spectroscopy as a tool in the evaluation of MEAs,” Journal of Power Sources, vol. 118, no. 1-2, pp. 179–182, May 2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378775303000855

[31] L. Salemme, L. Menna, and M. Simeone, “Calculation of the energy efficiency of fuel processor: PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value,” Energy, vol. 57, pp. 368–374, aug 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360544213003332

[32] Serenergy A/S, “Datasheet S165L Liquid cooled HTPEM stack,” pp. 1–2, 2014. [Online]. Available: http://serenergy.com/

[33] Y. Shao, G. Yin, Z. Wang, and Y. Gao, “Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges,” Journal of Power Sources, vol. 167, no. 2, pp. 235–242, May 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378775307004715

[34] C. Siegel, I. Buder, and A. Heinzel, “Sectional electrochemical impedance analysis of a high temperature polymer electrolyte membrane fuel cell with three types of flow-fields,” Electrochimica Acta, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0013468613016721

[35] S. Simon Araya, S. Juhl Andreasen, H. Venstrup Nielsen, and S. Knudsen K?r, “Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell,” Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 18 231–18 242, Dec. 2012. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0360319912020125

[36] S. Simon Araya, I. F. Grigoras, F. Zhou, S. J. Andreasen, and S. K. K?r, “Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate,” International Journal of Hydrogen Energy, pp. 2–9, 2014.

[37] C. Song, S. R. Hui, and J. Zhang, “High-temperature PEM Fuel Cell Catalysts and Catalyst Layers,” in PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. Springer London, 2008, pp. 861–888.

[38] A. Su, Y. M. Ferng, J. Hou, and T. L. Yu, “Experimental and numerical investigations of the effects of PBI loading and operating temperature on a high-temperature PEMFC,” International Journal of Hydrogen Energy, vol. 37, no. 9, pp. 7710–7718, May 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360319912003011

[39] J. R. Vang, S. J. Andreasen, S. Simon Araya, and S. K. K?r, “Comparative study of the break in process of post doped and solaASgel high temperature proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, vol. 39, no. 27, pp. 14 959–14 968, Aug. 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360319914019727

[40] X.-Z. Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells. London: Springer London, 2010. [Online]. Available: http://www.springerlink.com/index/10.1007/ 978-1-84882-846-9

[41] X. Yuan, H. Wang, J. C. Sun, and J. Zhang, “AC impedance technique in PEM fuel cell diagnosis–A review,” International Journal of Hydrogen Energy, vol. 32, no. 17, pp. 4365–4380, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/B6V3F-4P5YK26-1/2/8d98edc8e2b445980931039f7cb4c716

[42] C. Zhang, Z. Liu, W. Zhou, S. H. Chan, and Y. Wang, “Dynamic performance of a high-temperature PEM fuel cell - An experimental study,” Energy, vol. 90, pp. 1949–1955, 2015.

[43] J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z. S. Liu, and S. Holdcroft, “High temperature PEM fuel cells,” Journal of Power Sources, vol. 160, no. 2 SPEC. ISS., pp. 872–891, 2006.

[44] J. Zhang, T. Thampan, and R. Datta, “Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning of Proton Exchange Membrane Fuel Cells,” Journal of The Electrochemical Society, vol. 149, no. 6, p. A765, 2002.

[45] Y. Zhu, W. Zhu, and B. Tatarchuk, “Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy,” Journal of Power Sources, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S037877531400072X