Isaac Scientific Publishing

Journal of Particle Physics

Morphological Changes in Galaxies Caused by Relatively HighVelocity Collisions

Download PDF (732.7 KB) PP. 65 - 73 Pub. Date: October 12, 2017

DOI: 10.22606/jpp.2017.12001

Author(s)

  • Davide Vione*
    University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy.

Abstract

Here we provide an overview of the morphological modifications in galaxies caused by galactic collisions. Collision-induced features such as tidal waves can either become self-gravitating structures that may end up in dwarf tidal galaxies, or remain in the gravitational field of the parent galaxy to produce pseudo-circular features. Because of the collision-induced shock waves, such features are likely formed by an increase in the density of both existing stars and the inter-stellar gas, the latter ending up in bursts of star formation. The circular features are unlikely to survive a second encounter with another galaxy, however, and the outcome of multiple collisions between galaxies in a cluster is expected to be an elliptical object with a compact central nucleus. Multiple collisions can involve a couple of galaxies if their masses are high enough and their relative velocity low enough so as to allow them to remain gravitationally bound after the first collision event. In this case, deep morphological changes are expected to take place. If collision involves galaxies of different mass, the larger one is expected to strip material out of the smaller galaxy. Finally, our simulations of galactic collisions allowed us to reproduce the streams and inter-galactic bridges that are observed in the interacting Magellanic Clouds.

Keywords

Galactic collisions; star formation; galaxy harassment; galaxy clusters; gas stripping; inter-stellar medium.

References

[1] B. Moore, in Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution (eds. J. S. Mulchaey, A. Dressler and A. Oemler), CUP, 2003.

[2] J. Palous, Rev. Modern Astron. 18, 125, 2005.

[3] B. Jungwiert, F. Combes and J. Palous, Astron. Astrophys. 376, 85, 2001.

[4] G. Schaller, D. Schaerer, G. Meynet and A. Maeder, Astron. Astrophys. Suppl. Ser. 96, 269, 1992.

[5] A. Chitre and C. J. Jog, Astron. Astrophys. 388, 407, 2002.

[6] M. Bertschik and A. Burkert, Rev. Mex. Astron. Astrophys. 17, 144, 2003.

[7] T. Naab and A. Burkert, Astrophys. J. 597, 893, 2003.

[8] L. Gao, A. Loeb, P. J. E. Peebles, S. D. M. White and A. Jenkins, Astrophys. J. 614, 17, 2004.

[9] Y. Li, M. M. MacLow and R. S. Klessen, Astrophys. J. L29, 2004.

[10] P. Amram, C. Mendes de Oliveira, H. Plana, C. Balkowski, C. Hernandez, C. Carignan,E. S. Cypriano, L. Sodré Jr., J. L. Gach and J. Boulsteix, Astrophys. J. 612, L5, 2004.

[11] F. Bournaud, F. Combes and J. Jog, Astron. Astrophys. 418, L27, 2004.

[12] L. M. Buson, F. Bertola, A. Bressan, D. Burstein and M. Cappellari, Astron. Astrophys. 423, 965, 2004.

[13] P. A. Duc, E. Brinks and V. Springel, Astron. J. 10, 1238, 2000.

[14] P. A. Duc, F. Bournaud and F. Masset, Astron. Astrophys. 427, 803, 2004.

[15] S. Kim, L. Staveley-Smith, M. A. Dopita, K. C. Freeman, R. J. Sault, M. J. Kesteven and D. McConnell, Astrophys. J. 503, 674, 1998.

[16] S. Kim, M. A. Dopita, L. Staveley-Smith and M. Bessel, Astron. J. 118, 2797, 1999.

[17] E. Muller, L. Staveley-Smith, W. Zealey and S. Stanimirovic, Month. Not. Roy. Astron. Soc. 339, 105, 2003.

[18] C. Bruns, J. Kerp, L. Staveley-Smith, U. Mebold, M. E. Putman, R. F. Haynes, P. M. W. Kalberla and E. Muller, Astron. Astrophys. 432, 45, 2005.

[19] Gzwo Software Development, http://www.colliding-galaxies.com, last accessed October 2016.

[20] L. Ondra, StarClock: Stellar evolution at PC. http://leo.astronomy.cz/sclock, last accessed October 2016.

[21] L. T. Gardiner and M. Noguchi, Month. Not. Roy. Astron. Soc. 278, 191, 1996.

[22] J. E. Gunn and J. R. Gott III, Astrophys. J. 176, 1, 1972.