联系我们
Isaac Scientific Publishing
Modern Organic Chemistry Research
MOCR > Volume 3, Number 2, May 2018

A Computational Study on Tri and Tetraazaanthracenes

Download PDF  (515.2 KB)PP. 23-29,  Pub. Date:September 7, 2018
DOI: 10.22606/mocr.2018.32001

Author(s)
Ahmet KÖLE, Selçuk GÜMÜŞ
Affiliation(s)
Van Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080, Van, Turkey
Van Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080, Van, Turkey
Abstract
Tri and tetraazaanthracene derivatives have been considered theoretically to obtain information about their stabilities and aromaticities. The expected decrease of aromaticity of parent anthracene by tri or tetraaza substitution has been compensated by substitution of one of the hydrogens of the system by an electronegative group. The position of the substituent has been proved to be strongly effective on the aromaticity of the structure such that, the aromaticity is enhanced when the susbtituent is closer to the aza points.
Keywords
Aromaticity; triazaanthracenes; tetraazaanthracenes; NICS
References
  • [1]  Stevenson, L. S. The Fluorescence of Anthracene. (New York: Nabu Press, 2012).
  • [2]  Bernas, A., D. Leonardi, and M. Renaud. Photochem. Photbiol. 5 (1966): 721.
  • [3]  Chandross, E. A. and J. J. Ferguson. Chem. Phys. 45 (1966): 3564.
  • [4]  Minkin, V. I., M. N. Glukhovtsev, and B. Y. Simkin. Aromaticity and Antiaromaticity:Electronic and Structural Aspects. (New York: Wiley, 1994).
  • [5]  Schleyer, P. R. and H. Jiao. Pure Appl. Chem. 68 (1996): 209.
  • [6]  Glukhovtsev, M. N. J. Chem. Educ. 74 (1997): 132.
  • [7]  Krygowski, T. M.,M. K. Cyranski, Z. Czarnocki, G. Hafelinger, and A. R. Katritzky.Tetrahedron 56 (2000): 1783.
  • [8]  Schleyer, P. R. Chem. Rev. 101 (2001): 1115.
  • [9]  Cyranski, M. K., T. M. Krygowski, A. R. Katritzky, and P. R. Schleyer. J. Org. Chem. 67 (2002): 1333.
  • [10]  Schleyer, P. R., C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. E. Hommes, J. Amer. Chem. Soc. 118 (1996): 6317.
  • [11]  Jiao, H. and P. R. Schleyer. J. Phys. Org. Chem. 11 (1998): 655.
  • [12]  Schleyer, P. R., B. Kiran, D. V. Simion, and T. S. Sorensen. J. Amer. Chem. Soc. 122 (2000): 510.
  • [13]  Quinonero, D., C. Garau, A. Frontera, P. Ballaster, A. Costa, and P. M. Deya. Chem. Eur. J. 8 (2002): 433.
  • [14]  Patchkovskii, S. and W. Thiel. J. Mol. Model 6 (2002): 67.
  • [15]  Stewart, J. J. P. J. Comput. Chem. 10 (1989): 209.
  • [16]  Stewart, J. J. P. J. Comput. Chem. 10 (1989): 221.
  • [17]  Leach, A. R. Molecular Modelling (Essex: Longman, 1997).
  • [18]  Kohn, W. and L. J. Sham. Phys. Rev. 140 (1965): 1133.
  • [19]  Parr, R. G. and W. Yang. Density Functional Theory of Atoms and Molecules (London: Oxford University Press, 1989).
  • [20]  Becke, A. D. Phys. Rev. A 38 (1988): 3098.
  • [21]  Vosko, S. H., L. Vilk, and M. Nusair. Can. J. Phys. 58 (1980): 1200.
  • [22]  Lee, C., W. Yang, and R. G. Parr. Phys. Rev. B 37 (1988): 785.
  • [23]  Scuseria, G. E. J. Chem. Phys. 97 (1992): 7528.
  • [24]  Sosa, C. and C. Lee. J. Chem. Phys. 98 (1993): 8004.
  • [25]  Wilson, P. J., R. D. Amos, and N. C. Handy. Phys. Chem. Chem. Phys. 2 (2000): 187.
  • [26]  Pulay, P., J. F. Hinton, and K. Wolinski. “Nuclear Magnetic Shieldings And Molecular Structure.” In Ed. J. A. Tossel, NATO ASI Series C, vol. 386 (Netherlands: Kluwer, 1993) 243–262.
  • [27]  Hehre,W. J., L. Radom, P. R. Schleyer, and J. A. Pople. Ab Initio Molecular Orbital Theory (New York: Wiley, 1986).
  • [28]  Frisch, M. J.,G.W. Trucks, H. B. Schlegel,G.E. Scuseria, M. A. Robb, J.R.Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. (Wallingford, CT: Gaussian Inc., 2004).
  • [29]  Yu, L., X. Zhou, D. Wu, and H. Xiang. J. Organometall. Chem. 705 (2012): 75.
  • [30]  Stanger A. Chem. Commun. (2009): 1939.
  • [31]  Gümü?, S., Akbay, M. Polycyclic Arom. Comp. 33 (2013) 519.
Copyright © 2019 Isaac Scientific Publishing Co. All rights reserved.