联系我们
Isaac Scientific Publishing
Modern Organic Chemistry Research
MOCR > Volume 2, Number 3, August 2017

Synthesis and Anticancer Evaluation of Some New Heterocyclic Scaffolds Incorporating the Acetanilide Moiety

Download PDF  (401.1 KB)PP. 112-123,  Pub. Date:July 4, 2017
DOI: 10.22606/mocr.2017.23004

Author(s)
Ehab Abdel-Latif, Eman M. Keshk, Ali Saeed, Abdel-Galil M. Khalil
Affiliation(s)
Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
Abstract
New heterocyclic scaffolds containing acetanilide moiety were synthesized as anticancer agents. The precursor N-(4-acetamidophenyl)-2-cyanoacetamide (3) was coupled smoothly with (un)substituted phenyl diazonium chlorides producing the hydrazones 4. Various 2-pyridones 6 were picked up through the treatment of 3 with different arylidene malononitriles. The precursor underwent reaction with phenyl isothiocyanate in DMF/KOH followed by in situ addition of several α-halogenated reagents afforded the corresponding thiazole derivatives 9 and 10. Heating of thiocarbamoyl scaffold 11 with chloroacetone and phenacyl chloride resulted in the formation of 5-substitutedthiophene-3-carboxamides 12. Condensation of the synthesized ketene N,S-acetal 13 with NH2NH2 furnished the corresponding pyrazole-4-carboxamide 14. The newly synthesized scaffolds were characterized by considering their spectral analyses and they evaluated for their in vitro anticancer activities to show promising results.
Keywords
4-aminoacetanilide, hydrazones, 2-pyridones, thiazolidin-4-one, thiophene-3-carboxamides, anticancer activity.
References
  • [1]  El-Gaml, K. M. (2015) Synthesis and antimicrobial evaluation of new polyfunctionally substituted heterocyclic compounds derived from 2-cyano-N-(3-cyanoquinolin-2-yl)acetamide. American Journal of Organic Chemistry, 5, 1–9.
  • [2]  Darwish, E. S., Fattah, A. M. A., Attaby, F. A. and Al-Shayea, O. N. (2014) Synthesis and antimicrobial evaluation of some novel thiazole, pyridone, pyrazole, chromene, hydrazone derivatives bearing a biologically active sulfonamide moiety. International Journal of Molecular Sciences, 15, 1237–1254.
  • [3]  Panchal, A. D., Kunjadia, P. D. and Patel, P. M. (2011) Synthesis and biological evaluation of chalcone derivatives linked triazoles. International Journal of Pharmaceutical Sciences and Drug Research, 3, 331–337.
  • [4]  Alafeefy, A. M., Isik, S., Abdel-Aziz, H. A., Ashour, A. E., Vullo, D., Al-Jaber, N. A. and Supuran, C. T. (2013) Carbonic anhydrase inhibitors: Benzenesulfonamides incorporating cyanoacrylamide moieties are low nanomolar/subnanomolar inhibitors of the tumor-associated isoforms IX and XII. Bioorganic and Medicinal Chemistry, 21, 1396–1403.
  • [5]  Arora, M., Saravanan, J., Mohan, S. and Bhattacharjee, S. (2013) Synthesis, characterization and antimicrobial activity of some Schiff bases of 2-amino-N-(p-acetamidophenyl carboxamido)-4,5,6,7-tetramethylene thiophenes. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 315-319.
  • [6]  Khokhani, K., Khatri, T. and Patel, P. (2013). One Pot Synthesis of bioactive novel cyanopyridones. Journal of the Korean Chemical Society, 57, 476–482.
  • [7]  Fadda, A. A., Mukhtar, M. M. and Refat, H. M. (2012) Utility of activated nitriles in the synthesis of some new heterocyclic compounds. American Journal of Organic Chemistry, 2, 32–40.
  • [8]  Al-Saadi, M. S., Faidallah, H. M. and Rostom, S. A. F. (2008) Synthesis and biological evaluation of some 2,4,5-trisubstituted thiazole derivatives as potential antimicrobial and anticancer agents. Archiv der Pharmazie -Chemistry in Life Sciences, 341, 424-434.
  • [9]  Bondock, S., Rabie, R., Etman, H. A. and Fadda, A. A. (2008) Synthesis and antimicrobial activity of some newheterocycles incorporating antipyrine moiety. European Journal of Medicinal Chemistry, 43, 2122-2129.
  • [10]  Bondock, S., Khalifa, W. and Fadda, A. A. (2007) Synthesis and antimicrobial evaluation of some new thiazole,thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde.European Journal of Medicinal Chemistry, 42, 948-954.
  • [11]  Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. and Kumari, N. S. (2008)Synthesis of some novel 2,4-disubstituted thiazoles as possible antimicrobial agents. European Journal ofMedicinal Chemistry, 43, 261-267.
  • [12]  Chandanshive, J. Z., Pedro, B. G., Tiznado, W., Bonini, B. F., Caballero, J. and Femoni, C. (2012) 1,3-Dipolarcycloaddition of nitrile imines with α,β-unsaturated lactones, thiolactones and lactams: Synthesis of ring-fusedpyrazoles. Tetrahedron, 68, 3319-3328.
  • [13]  Bekhit, A. A. and Aziem T. A. (2004) Design, synthesis and biological evaluation of some pyrazole derivativesas anti-inflammatory-antimicrobial agents. Bioorganic and Medicinal Chemistry, 12, 1935–1945.
  • [14]  El-Emary, T. and El-Mohsen, S. (2012) Multi-component one-pot synthesis and antimicrobial activities of 3-methyl-1,4-diphenyl-7-thioxo-4,6,8,9-tetrahydro-pyrazolo[5,4-b]pyrimidino[5,4-e]pyridine-5-one and relatedderivatives. Molecules, 17, 14464–14483.
  • [15]  Abu-Hashem, A. A., Gouda, M. A. and Badria, F. A. (2010) Synthesis of some newpyrimido[2',1':2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents. EuropeanJournal of Medicinal Chemistry, 45, 1976–1981.
  • [16]  Gouda, M. A., Berghot, M. A., Abd El-Ghani, G. E. and Khalil, A. M. (2010). Synthesis and antimicrobialactivities of some new thiazole and pyrazole derivatives based on 4,5,6,7-tetrahydrobenzothiophene moiety.European Journal of Medicinal Chemistry, 45, 1338–1345.
  • [17]  Khalil, A. M., Berghot, M. A. and Gouda M. A. (2009) Synthesis and antibacterial activity of some new thiazoleand thiophene derivatives. European Journal of Medicinal Chemistry, 44, 4434–4440.
  • [18]  Gouda, M. A., Berghot, M. A., Shoeib, A. I. and Khalil, A. M. (2010) Synthesis and antimicrobial of certainnew thiazolidinone, thiazoline and thiophene derivatives. Phosphorus, Sulfur, and Silicon and the RelatedElements, 185, 1455–1462.
  • [19]  Gouda, M. A. and Abu-Hashem A. A. (2011) Synthesis, characterization, antioxidant and antitumor evaluationof some new thiazolidine and thiazolidinone derivatives. Archiv der Pharmazie - Chemistry in Life Sciences, 11,170–177.
  • [20]  Wilby, M. J. and Hutchinson P. J. (2004) The pharmacology of chlormethiazole: A potential neuroprotectiveagent. CNS Drug Reviews, 10, 281–294.
  • [21]  Harnett, J. J., Roubert, V., Dolo, C., Charnet, C., Spinnewyn, B., Cornet, S., Rolland, A., Marin, J. G., Bigg, D.and Chabrier, P. E. (2004) Phenolic thiazoles as novel orally-active neuroprotective agents. Bioorganic andMedicinal Chemistry Letters, 14, 157–160.
  • [22]  Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kononowicz, K. K. and Gzella, A. (2006) Anticancerthiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties,and computational studies. Bioorganic and Medicinal Chemistry, 14, 5230–5240.
  • [23]  Kashfi, K. (2009) Anti-inflammatory agents as cancer therapeutics. Advances in pharmacology, 57, 31–89.
  • [24]  Modiya, P. R. and Patel, C. N. (2012) Synthesis and screening of antibacterial and antifungal activity of 5-chloro-1,3-benzoxazol-2(3H)-one derivatives. Organic and Medicinal Chemistry Letters, 2, 29.
  • [25]  Al-Said, M. S., Ghorab, M. M. and Nissan, Y. M. (2012) Dapson in heterocyclic chemistry, part VIII: Synthesis,molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties. Chemistry Central Journal, 6, 64.
  • [26]  Dragovich, P. S., Prins, T. J., Zhou, R., Brown, E. L., Maldonado, F. C., Fuhrman, S. A., Zalman, L. S.,Tuntland, T., Lee, C. A. and Patick, A. K. (2002) Structure-based design, synthesis, and biological evaluation ofirreversible human rhinovirus 3C protease inhibitors. Part 6: Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics. Journal of Medicinal. Chemistry, 45, 1607–1623.
  • [27]  Dragovich, P. S., Prins, T. J. Zhou, R., Johnson, T. O., Brown, E. L., Maldonado, F. C., Fuhrman, S. A., Zalman, L. S., Patick, A. K. and Matthews, D. A. (2002) Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. Part 7: Structure–activity studies of bicyclic 2-pyridone-containing peptidomimetics. Bioorganic and Medicinal Chemistry Letters, 12, 733–738.
  • [28]  Ye, D., Zhang, Y., Wang, F., Zheng, M., Zhang, X., Luo, X., Shen, X., Jiang, H. and Liu, H. (2010) Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity. Bioorganic and Medicinal Chemistry, 18, 1773-1782.
  • [29]  Kulandasamy, R., Adhikari, A. V. and Stables, J. P. (2009) A new class of anticonvulsants possessing 6 Hz activity: 3,4-Dialkyloxy thiophene bishydrazones. European Journal of Medicinal Chemistry, 44, 4376–4384.
  • [30]  Khalil, A. M., Berghot, M. A., Ghada E. A. and Gouda, M. A. (2010), Synthesis and antimicrobial evaluation of some new thiophene derivatives. European Journal of Medicinal Chemistry, 40, 1658-1669.
  • [31]  Ronad, P. M., Noolvi, M. N., Sapkal, S., Dharbhamulla, S. and Maddi, V. S. (2010) Synthesis and antimicrobial activity of 7-(2-substitutedphenylthiazolidinyl)-benzopyran-2-one derivatives. European Journal of Medicinal Chemistry, 45, 85-89.
  • [32]  Borges, F., Roleir, F., Santana, L. and Uriare E. (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current Medicinal Chemistry, 12, 887-916.
  • [33]  Fadda, A. A., Berghot, M. A., Amer, F. A., Badway, D. S. and Bayoumy, N. M. (2012) Synthesis and antioxidant and antitumor activity of novel pyridine, chromine, thiophene and thiazoles derivatives. Archiv der Pharmazie, 435, 378–385.
  • [34]  Fadda, A. A. and Youssif, E. H. E. (2011) Synthesis of some new chromene derivatives. Synthetic Communications, 41, 677-694.
  • [35]  El-Shafei, A., Fadda, A. A., Abdel-Gawad, I. I. and Youssif, E. H. E. (2009) Stereospecificity of Diels–Alder reactions validated using ab initio calculations: Synthesis of novel coumarin and phenanthridine derivatives. Synthetic Communications, 39, 2954-2972.
  • [36]  Lahtchev, K. L. Batovska, D. I., Parushev, St. P., Ubiyvovk, V. M. and Sibirny, A. A. (2008) Antifungal activity of chalcones: A mechanistic study using various yeast strains. European Journal of Medicinal Chemistry, 43, 2220-2228.
  • [37]  Tim, M. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55-63.
  • [38]  Francois, D. and Rita, L. (1986) Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89, 271-277.
  • [39]  Helena, J. M., Nader, N. H., Micheal, A. B., David, H. G., Mary, J. S., Kerri, A. S., Kevin, B., Ruth, H., Stephen, G., Mohanraj, D., Gerald, A. S., Vikas, P. S., Donald, W. K. and Ralph, R. W. (1998). Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature, 394, 287-291.
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.