Isaac Scientific Publishing

Modern Organic Chemistry Research

A Rapid and Green Procedure for the Synthesis of 5-Arylidene Rhodanine Derivatives

Download PDF (294 KB) PP. 30 - 34 Pub. Date: November 17, 2016

DOI: 10.22606/mocr.2016.11004

Author(s)

  • Liangliang Han*
    College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
  • Zhongqiang Zhou
    College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China

Abstract

A simple and efficient synthesis of 5-arylidene rhodanine derivatives by the Knoevenagel condensation of aromatic aldehydes with rhodanine in the presence of 2-hydroxy ethylammonium acetate under solvent-free conditions is described. The attractive features of this procedure are high yields, short reaction time, operational simplicity, mild and environmentally benign reaction conditions, easy preparation and reusability of the catalyst.

Keywords

5-arylidene rhodanine derivatives; Knoevenagel condensation; solvent-free conditions; 2-hydroxy ethylammonium acetate

References

[1] Y. Momose, K. Meguro, H. Ikeda, C. Hatanaka, S. Oi and T. Sohda, “Studies on antidiabetic agents. X.Synthesis and biological activities of pioglitazone and related compounds,” Chemical & Pharmaceutical Bulletin, vol. 39, no. 6, pp. 1440–1445, 1991.

[2] J. H. Ahn, S. J. Kim, W. S. Park, S. Y. Cho, J. D. Ha, S. S. Kim, S. K. Kang, D. G. Jeong, S.-K. Jung, S.-H. Lee, H. M. Kim, S. K. Park, K. H. Lee, C. W. Lee, S. E. Ryub and J.-K. Choi, “Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors,” Bioorganic & Medicinal Chemistry Letters, vol. 16, no. 11, pp. 2996–2999, 2006.

[3] M. Sortino, P. Delgado, S. Juarez, J. Quiroga, R. Abon?a, B. Insuasty, M. Nogueras, L. Rodero, F. M. Garibotto, R. D. Enrize and S. A. Zacchinoa, “Synthesis and antifungal activity of (Z)-5-arylidenerhodanines,” Bioorganic & Medicinal Chemistry, vol. 15, no. 1, pp. 484–494, 2007.

[4] B. Y. Yang and D. H. Yang, “Solvent-free synthesis of 5-benzylidene-2-thioxothiazolidin-4-ones and thiazolidine-2,4-diones catalysed by glycine under microwave irradiation,” Journal of Chemical Research, vol. 35, no. 4, pp. 238–239, 2011.

[5] N. H. Metwally, N. M. Rateb and H. F. Zohdi, “A simple and green procedure for the synthesis of 5-arylidene-4-thiazolidinones by grinding,” Green Chemistry Letters and Reviews, vol. 4, no. 3, pp. 225–228, 2011.

[6] D. Hardej, C. R. Ashby, N. S. Khadtare, S. S. Kulkarni, S. Singh and T. T. Talele, “The synthesis of phenylalanine-derived C5-substituted rhodanines and their activity against selected methicillin-resistant Staphylococcus aureus (MRSA) strains,” European Journal of Medicinal Chemistry, vol. 45, no. 12, pp. 5827–5832, 2010.

[7] S. Kamila, H. Ankati and E. R. Biehl, An efficient microwave assisted synthesis of novel class of Rhodanine derivatives as potential HIV-1 and JSP-1 inhibitors. Tetrahedron Letters, vol. 52, no. 34, pp. 4375–4377, 2011.

[8] S. Kamila and E. R. Biehl, “Microwave-assisted synthesis of novel bis(2-thioxothiazolidin-4-one) derivatives as potential GSK-3 inhibitors,” Tetrahedron Letters, vol. 53, no. 31, pp. 3998–4003, 2012.

[9] H. Li, J. Yang, S. Ma and C. Qiao, “Structure-based design of rhodanine-based acylsulfonamide derivatives as antagonists of the anti-apoptotic Bcl-2 protein,” Bioorganic & Medicinal Chemistry, vol. 20, no. 14, pp. 4194–4200, 2012.

[10] J. Zhou, Y. Song, F. Zhu and Y. Zhu, “Facile synthesis of 5-benzylidene rhodamine derivatives under microwave irradiation,” Synthetic Communications, vol. 36, no. 22, pp. 3297–3303, 2006.

[11] K. Gong, Z. He, Y. Xu, D. Fang and Z. Liu, “Green synthesis of 5-benzylidene rhodanine derivatives catalyzed by 1-butyl-3-methyl imidazolium hydroxide in water,” Monatshefte Fuer Chemie, vol. 139, no. 8, pp. 913–915, 2008.

[12] J. J. Ma, S. T. Gao, Z. Li, R. X. Tang, H. Y. Liu, C. Wang and Y. Gao, “Synthesis of 5-arylmethylidene-2-thio-4-thiazolidinone derivatives catalyzed by alkaline ionic liquid,” Chinese Journal of Organic Chemistry, vol. 28, no. 2, pp. 339–342, 2008.

[13] V. Opletalova, J. Dolezel, K. Kralova, M. Pesko, J. Kunes and J. Jampilek, “Synthesis and characterization of (Z)-5-arylmethylidenerhodanines with photosynthesis-inhibiting properties,” Molecules, vol. 16, no. 16, pp. 5207–5227, 2011.

[14] W. Hanefeld and M. Schlitzer, “Synthesis of 3-aminorhodanine derivatives as aldose reductase inhibitors,” Journal of Heterocyclic Chemistry, vol. 32, no. 3, pp. 1019–1025, 1995.

[15] X. Z. Lian, Y. Q. Li, and M. Y. Zhou, “Ionic liquid/H2O system promoted condensation of aromatic aldehydes and rhodamine,” Chinese Journal of Organic Chemistry, vol. 26, no. 9, pp. 1272–1274, 2006.

[16] O. Zvarec, S. W. Polyak, W. Tieu, K. Kuan, H. Dai, D. S. Pedersen, R. Morona, L. Zhang, G. W. Booker and A. D. Abell, “5-Benzylidenerhodanine and 5-benzylidene-2-4-thiazolidinedione based antibacterials,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 8, pp. 2720–2722, 2012.

[17] M. J. Robertson, G. Hadzic, J. Ambrus, D. Y. Pome, E. Hyde, A. Whiting, A. Mariana, L. Kleist, N. Chau, V. Haucke, P. J. Robinson and A. McCluskey, “The rhodadyns, a new class of small molecule inhibitors of Dynamin GTPase activity,” ACS Medicinal Chemistry Letters, vol. 3, no. 5, pp. 352–356, 2012.

[18] N. Zidar, T. Tomasic, R. Sink, V. Rupnik, A. Kovac, S. Turk, D. Patin, D. Blanot, C. C. Martel, A. Dessen, M. M. Premru, A. Zega, S. Gobec, L. P. Masic and D. Kikelj, “Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase,” Journal of Medicinal Chemistry, vol. 53, no. 18, pp. 6584–6594, 2010.

[19] N. Zidara, T. Tomasic, R. Sink, A. Kovac, D. Patin, D. Blanot, C. Contreras-Martel, A. Dessen, M. M. Premru, A. Zega, S. Gobec, L. P. Masic and D. Kikelj, “New 5-benzylidenethiazolidin-4-one inhibitors of bacterial MurDligase: Design, synthesis, crystal structures, and biological evaluation,” European Journal of Medicinal Chemistry, vol. 46, no. 11, pp. 5512–5523, 2011.

[20] M. Song, C. Zheng, X. Deng, Q. Wang, S. Hou, T. Liu, X. Xing and H. Piao, “Synthesis and bioactivity evaluation of rhodanine derivatives as potential anti-bacterial agents,” European Journal of Medicinal Chemistry, vol. 54, no. 11, pp. 403–412, 2012.

[21] K. Tanaka and F. Toda, “Solvent-free organic synthesis,” Chemical Reviews, vol. 100, no. 3, pp. 1025–1074, 2000.

[22] I. Cota, R. Gonzalez-Olmos, M. Iglesias and F. Medina, “New short aliphatic chain ionic liquids: synthesis, physical properties, and catalytic activity in aldol condensations,” Journal of Physical Chemistry B, vol. 111, no. 43, pp. 12468–12477, 2007.

[23] S. Kantevari, M. V. Chary, A. P. R. Das, S. V. N. Vuppalapati and N. Lingaiah, “Catalysis by an ionic liquid: highly efficient solvent-free synthesis of aryl-14H-dibenzo[a.j]xanthenes by molten tetrabutylammonium bromide under conventional and microwave heating,” Catalysis Communications, vol. 9, no. 7, pp. 1575–1578, 2008.