Isaac Scientific Publishing

Environmental Pollution and Protection

Acetylcholinesterase Activity in Fish Exposed to Mercury in Guanabara Bay, RJ, Brazil

Download PDF (577 KB) PP. 91 - 99 Pub. Date: December 1, 2018

DOI: 10.22606/epp.2018.34001

Author(s)

  • Ana Paula de Castro Rodrigues*
    Geochemistry Department, Fluminense Federal University, Niterói, Brazil
  • Rodrigo Guerra Carvalheira
    Geochemistry Department, Fluminense Federal University, Niterói, Brazil
  • Vanessa Gomes
    CESTEH, Osvaldo Cruz Foundation, Rio de Janeiro, Brazil
  • Ana Rosa Linde Arias
    CESTEH, Osvaldo Cruz Foundation, Rio de Janeiro, Brazil
  • Nádia Regina Pereira Almosny
    Veterinary School, Fluminense Federal University, Niterói, Brazil
  • Zuleica Carmen Castilhos
    Centre for Mineral Technology, Rio de Janeiro, Brazil
  • Edison Dausacker Bidone
    Geochemistry Department, Fluminense Federal University, Niterói, Brazil

Abstract

Acetylcholinesterase (AChE) is an important regulatory enzyme that controls the transmission of nerve impulses across cholinergic synapses. This study evaluated AChE activity as an effect biomarker for ecological risk assessment related to mercury contamination in fish from Guanabara bay, Rio de Janeiro State, Brazil. A total of 30 fishes were collected, 14 specimens of Genidens genidens and 16 specimens of Haemulon sp. at three sampling stations. AChE activity varied from 0.18 to 1.29 μmol min-1 mg-1 protein for G. genidens and a negative correlation between AChE activity in muscles and mercury concentrations in kidney was found (-0.55; p<0.05; n=14). For Haemulon sp. the enzyme activity showed a smaller range (0.06 to 0.22 μmol min-1 mg-1 protein) and a negative correlation between mercury concentrations in muscles and AChE activity was found (r = -0.570; p<0.05; n=16), suggesting a decrease on enzymatic response in specimens with higher mercury bioaccumulation.

Keywords

Biomarkers, cholinesterases, Genidens genidens, Haemulon sp., metals.

References

[1] M.B Moretto, C.L. Lermen, V.M. Morsch, D. Bohrer, R.F. Ineu, A.C. Da Silva, D. Balz, M.R.C. Schetinger, “Effect of subchronic treatment with mercury chloride on NTPDase, 5'-nucleotidase and acetylcholinesterase from cerebral cortex of rats”, Journal of Trace Elements on Medicine Biology, vol 17, no 4, pp. 255-260, 2004.

[2] R. Lavado, R. Ure?a, R. Martin-Skilton, A. Torreblanca, J. Del Ramo, D. Raldúa, C. Porte, “The combined use of chemical and biochemical markers to assess water quality along the Ebro River Ramo”. Environmental Pollution, vol 139, pp. 330-339, 2006.

[3] A.T.B. GUIMAR?ES, H.C. SILVA DE ASSIS, and W. BOEGER, “The effect of trichlorfon on acetylcholinesterase activity and histopathology of cultivated fish Oreochromis niloticus”. Ecotoxicology and Environmental Safety, vol 68, pp. 57–62, 2007.

[4] M.B. Fonseca, L. Glusczak, B.S. Moraes, C.C. Menezes, A. Pretto, M.A. Tierno, R. Zanella, F.F. Gon?alves, V.L. Loro, “The 2,4-D herbicide effects on acetylcholinesterase activity and metabolic parameters of piava freshwater fish (Leporinus obtusidens)”. Ecotoxicology Environmental Safety, vol 69, pp. 416–420, 2008.

[5] M.F. Frasco, D. Fournier, F. Carvalho, L. Guilhermino, “Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity”, Biomarkers, vol 10, pp. 360–75, 2005.

[6] M.F. Frasco, J.P. Colletier, M. Weik, F. Carvalho, L. Guilhermino, J. Stojan, D. Fournier, “Mechanisms of cholinesterase inhibition by inorganic mercury”. FEBSJ, vol 274, pp. 1849–61, 2007.

[7] M.F. Frasco, D. Fournier, F. Carvalho, L. Guilhermino, “Does mercury interact with the inhibitory effect of dichlorvos on Palaemon serratus (Crustacea: Decapoda) cholinesterase?” Science of the Total Environment, vol 404, pp. 88 – 93, 2008.

[8] L. Pari and P. Murugavel, “Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats”, Toxicology, vol 234, pp. 44–50, 2007.

[9] G. Petraglio, M. Bartolini, D. Branduardi, V. Andrisano, M. Recanatini, F.L. Gervasio, A. Cavalli, M. Parrinello, “The role of Li+, Na+, and K+ in the ligand binding inside the human acetylcholinesterase gorge”. Proteins, vol 70, pp. 779–785, 2008.

[10] L.R. Vieira, C. Gravato, A.M. Soares, F. Morgado, L. Guilhermino, “Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior”, Chemosphere, vol 76, no 10, pp. 1416-27, 2009.

[11] F.A. Tilton, T.K. Bammler, and E.P. Gallagher, “Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures”, Comparative Biochemistry and Physiology, Part C, vol 153, pp. 9–16, 2011.

[12] D. Lima, G.M. Roque, E.A. Almeida, “In vitro and in vivo inhibition of acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio)”, Marine Environmental Research, vol 91, pp. 45-51, 2013.

[13] M.Y. Shukor, L.G. Tham, M.I. Halmi, I. Khalid, G. Begum, M.A. Syed, “Development of an inhibitive assay using commercial Electrophorus electricus acetylcholinesterase for heavy metal detection”. Journal of Environmental Bioogy, vol 34, no 5, pp. 967-970, 2013.

[14] J.F. Gon?alves, A.M. Fiorenza, R.M. Spanevello, C.M. Mazzanti, G.V. Bochi, F.G. Antes, N. Stefanello, M.A. Rubin, V.L. Dressler, V.M. Morsch, M.R.C. Schetinger, “N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium”, Chemico-Biological Interactions, vol 186, pp. 53–60, 2010.

[15] S. Roy, A. Chattoraj, S. Bhattacharya, “Arsenic-induced changes in optic tectal histoarchitecture and acetylcholinesterase–acetylcholine profile in Channa punctatus: Amelioration by selenium”, Comparative Biochemistry and Physiology, Part C, vol 144, pp. 16–24, 2006.

[16] T. Gill, “Use of the fish enzyme system in monitoring water quality: effects of mercury on tissue enzymes”, Comparative Biochemistry and Physiology, Part C, vol 97, no 2, pp. 287-292, 1990.

[17] WHO. Environmental Health Criteria (EHC 101). Methylmercury. Geneva, 143p. 1990.

[18] B.P. Shaw and A.K. Panigrahi, “Brain AChE activity studies in some fish species collected from a mercury contaminated estuary”. Water Air Soil Pollution, vol 53, pp. 327–334, 1990.

[19] A. Suresh, B. Sivaramakrishna, P.C. Victoriamma, K. Radhakrishnaiah, “Comparative study on the inhibition of acetylcholinesterase activity in the freshwater fish Cyprinus carpio by mercury and zinc”. Biochem. Int., vol 26, pp. 367-375, 1992.

[20] F.R. Franciscato, N.M. Goulart, F.A. Lovatto, E.M.M Duarte, V.L. Flores, N.C. Dressler, M.E. Peixoto, C. Pereira, “ZnCl2 exposure protects against behavioral and acetylcholinesterase changes induced by HgCl2”, Int. J. Devl Neuroscience, vol 27, pp. 459–468, 2009.

[21] A.P.C. Rodrigues, P.O. Maciel, L.C.C. Pereira da Silva, C. Albuquerque, A.F. Inácio, M. Freire, A.R. Linde, N.R.P. Almosny, J.V. Andreata, E.D. Bidone, Z.C. Castilhos, “Biomarkers for mercury exposure in tropical estuarine fish”, Journal of Brazilian Society of Ecotoxicology, vol 5, no 1, pp. 9-18, 2010.

[22] S.K. Richetti, D.B. Rosemberg, J. Ventura-Lima, J.M. Monserrat, M.R. Bogo, C.D. Bonan, “Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure”, NeuroToxicology, vol 32, pp. 116–122, 2011.

[23] T.B. Jesus, P.G.A. Almeida, C.S. Vergílio, A.L.S. Machado, C.E.V. Carvalho, “Acute intraperitoneal mercury chloride contamination and distribution in liver, muscle and gill of a neotropical fish Hoplias malabaricus (BLOCK, 1794)”, Brazilian Archieve of Biology Technology, vol 54, pp. 379-386, 2011.

[24] T.B. Jesus, J.S. Colombi, C.A.O. Ribeiro, H.C.S. de Assis, C.E.V. de Carvalho, “Cholinestarase activity in methylmercury and mercury chloride exposure fish”, Ecotoxicology Environmental Contamination, vol 8, pp. 147-148, 2013.

[25] J.R.M.A. Costa, M. Mela, H.C.S. Assis, E. Pelletier, M.A.F. Randia, C.A. Oliveira Ribeiro, “Enzymatic inhibition and morphological changes in Hoplias malabaricus from dietary exposure to lead (II) or methylmercury”. Ecotoxicology and Environmental Safety, vol 67, pp. 82–88, 2007.

[26] W. Machado, R.E. Santelli, D.D. Loureiro, E.P. Oliveira, A.C. Borges, V.K. Ma, L.D. Lacerda, “Mercury accumulation in sediments along an eutrophication gradient in Guanabara bay, Southeast Brazil”, Journal of Brazilian Chemistry Society, vol 19, no 3, pp. 569-575, 2008.

[27] A.P.C. Rodrigues, P.O. Maciel, L.C.C. Pereira da Silva, N.R.P. Almosny, J.V. Andreata, E.D. Bidone, Z.C. Castilhos, “Relationship between mercury concentrations in the blood with that in the muscle of four estuarine tropical fish species, Rio de Janeiro State, Brazil”, Bulletin of Environmental Contamination and Toxicology, vol 86, pp. 357–362, 2011.

[28] H.A. Kehrig, T.G. Seixas, E.A. Palermo, A.P. Baêta, C.W. Castelo-Branco, O. Malm, I. Moreira, “The relationships between mercury and selenium in plankton and fish from a tropical food web”. Environmental Science and Pollution Research, vol 16, pp. 10–24, 2009.

[29] A. Carvalho-Filho, Peixes: Costa Brasileira. S?o Paulo: Melro, 1999. 320p.

[30] P.T.C. Chaves and A.L. Vendel, “Aspectos da alimenta??o de Genidens genidens (Valenciennes) (Siluriformes, Ariidae) na Baía de Guaratuba, Paraná”, Revista Brasileira de Zoologia, vol 13, no 3, pp. 669-675, 1996.

[31] J.S. Nelson, Fishes of the world. Wiley, New York. 1994.

[32] A.D. Eaton, A.E. Greenberg, and L.S. Clesceri, “10600: Fish. In: Standard Methods for the examination of water and wastewater”. Washington D. C.: APHA, pp.1092-1107, 1998.

[33] J.J. Oliveira-Silva, S.R. Alves, A.F. Inácio, A. Meyer, P.N. Sarcinelli, M.F. Ferreira, J.C. Cunha, J.C. Moreira, “Cholinesterase activities determination in frozen blood samples: An improvement to the occupational monitoring in developing countries”, Hum. Exp. Toxicol., vol 19, no 3, pp. 173-177, 2000.

[34] G.L. Elmann, K. Courtney, J.R.A. Andres, R. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity”, Biochem. Pharmacol, vol 7, pp. 89-95, 1961.

[35] J.B. Cunha, J.S. Lima, M.V.C. Faria, “Brain acetylcholinesterase as an in vitro detector of organophosphorus and carbamate insecticides in water”, Water Research, vol 25, no 7, pp. 835-840, 1991.

[36] J.S. Azevedo, E.S. Braga, H.C. Silva de Assis, C.A. Oliveira Ribeiro, “Biochemical changes in the liver and gill of Cathorops spixii collected seasonally in two Brazilian estuaries under varying influences of anthropogenic activities”, Ecotoxicology and Environmental Safety, vol 96, pp. 220–230, 2013.

[37] R. Siscar, S. Koenig, A. Torreblanca, M. Solé, “The role of metallothionein and selenium in metal detoxification in the liver of deep-sea fish from the NW Mediterranean Sea”, Science of the Total Environment, vol 466-467, pp. 898-905, 2014.

[38] M.M. Oliveira, M.V. Silva Filho, V.L.F.C. Bastos, F.C. Fernandes, J.C. Bastos, “Brain acetylcholinesterase as a marine pesticide biomarker using Brazilian fishes”, Marine Environmental Research, vol 63, pp. 303–312, 2007.

[39] J.M. Monserrat, P.E. Martínez, L.A. Geracitano, L.L. Amado, C.M.G. Martins, G.L.L. Pinho, I.S. Chaves, M. Ferreira-Cravo, J. Ventura-Lima, A. Bianchini, “Pollution biomarkers in estuarine animals: Critical review and new perspectives”, Comparative Biochemistry and Physiology, vol 146, pp. 221–234, 2007.

[40] M.A. Grippo and A.G. Heath, “The effect of mercury on the feeding behavior of fathead minnows (Pimephales promelas)”, Ecotoxicology and Environmental Safety, vol 55, pp. 187–198, 2003.

[41] S.M. Al-Ghais, “Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish”, Marine Pollution Bulletin, vol 74, pp. 183–186, 2013.