Isaac Scientific Publishing

Environmental Pollution and Protection

Spatial-Temporal Variability and Characterisation of Aerosols in Urban Air Quality of Ahmedabad, India, based on Field and Satellite Data

Download PDF (708.1 KB) PP. 13 - 22 Pub. Date: March 9, 2018

DOI: 10.22606/epp.2018.31002

Author(s)

  • Rajesh Iyer*
    Department of Physics and Electronics, St. Xavier’s College, Ahmedabad, Gujarat – India.
  • Abha Chhabra
    Space Applications Centre, ISRO, Ahmedabad, Gujarat - India
  • Prakash Chauhan
    Space Applications Centre, ISRO, Ahmedabad, Gujarat - India
  • Tejas Turakhia
    Department of Physics and Electronics, St. Xavier’s College, Ahmedabad, Gujarat – India.
  • Mohit Porwal
    Department of Physics and Electronics, St. Xavier’s College, Ahmedabad, Gujarat – India.
  • Divya Patel
    Department of Physics and Electronics, St. Xavier’s College, Ahmedabad, Gujarat – India

Abstract

Particulate matter (PM), or aerosol play an important role in Air Quality. Ahmedabad is an urban, industrialized and one of the fastest growing city in Western India. This study presents spatio-temporal variability in mass concentrations of different Particulate Matter as well as their characteristics during different seasons based on field measurements in different micro urban environments of Ahmedabad. The meteorological parameters such as wind speed, temperature, relative humidity and atmospheric pressure played a very important role in the seasonal variation of the PM concentrations. The PM10, PM2.5 and PM1 were found to be highest with 229.4 µg/m3, 82.20 µg/m3 and 53.53 µg/m3, respectively in winter season. These PM concentrations are higher than the National Ambient Air Quality Standard (NAAQS) for PM10 and PM2.5. The aerosol characteristic based on field measurement of spectral Aerosol Optical Depth indicates significant contribution by coarser mode particles. The Inhalable, Thoracic and Alveolic PM concentrations which are significant for human health impacts of ambient air quality were observed in the increasing order of monsoon<summer<winter seasons. It is interesting to note that rainfall play a scavenging effect only on the coarser particles with mean PM1 values lowest in summer season (20.4 μg/m3) as compared to PM2.5 and PM10 which are lowest during monsoon season. Vertical profile of aerosols from space-borne Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) indicated a predominance of polluted dust type aerosols over the study area at height of 3-4 km which is important constituent of inhalable air of resident population. The results of this study may serve as important inputs for policy makers for formulating action plans and improving air quality by adopting suitable air pollution control measures in fast urbanising environment.

Keywords

Particulate matter, seasonal variation, aerosol characterization, aerosol optical depth, space borne lidar data.

References

[1] Piao, Casimiro A., Cardoso, J.G., Mário A. Cerqueira, Calvo, A., Teresa V. N., Alves, C.A., Custódio, D., Almeida, S.M. and Silva, M.A., “Seasonal variability of aerosol concentration and size distribution in Cape Verde using a continuous aerosol optical spectrometer.” Frontiers in Environmental Science,2016.

[2] Makkonen, U., Hellén, H., Anttila, P., Ferm, M., “Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006.” Science of the Total Environment 408, 644 - 651, 2010.

[3] Lim, J.M., Lee, J.H., Moon, J.H., Chung, Y.S., Kim, K.H., “Source apportionment of PM10 at a small industrial area using positive matrix factorization.” Atmospheric Research 95, 88 - 100, 2010.

[4] Dockery DW et al., “Effect of air pollution control on mortality and hospital admissions in Ireland.”, Boston, Health Effects Institute (Research Report 176), 2013

[5] Katsouyanni K, Touloumi G, Samoli E, Gryparis A, Le Tertre A, Monopolis Y, et al. “Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology.”, 2001; 12: 521–531.

[6] N. Furuta, A. Iijima, A. Kambe, K. Sakai, K. Sato “Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004” Journal of Environmental Monitoring, pp. 1155–1161, 2005

[7] Fuzzi et al., “Particulate matter, air quality and climate: lessons learned and future needs.” Atmos. Chem. Phys.15, 8217–8299, 2015.

[8] Balakrishnan, K., Sambandam, S., Ramaswamy, P., Mehta, S., Smith, K.R. “Exposure assessment for respirable particulates associated with household fuel use in rural districts of Andhra Pradesh, India”. Journal of Exposure Analysis and Environmental Epidemiology, 14, S14–S25, 2004.

[9] Balakrishnan, K., Parikh, J., Sankar, S., Padmavathi, R., Srividya, K., Venugopal, V., Prasad, S., Pandey, V.L., “Daily average exposures to respirable particulate matter from combustion of biomass fuels in rural households of Southern India.” Environmental Health Perspectives 110, 1069–1075, 2002.

[10] Dasgupta, S., Huq, M., Khaliquzzaman, M., Pandey, K., Wheeler, D., “Indoor air quality for poor families: New evidence from Bangladesh.” Indoor Air 16, 426–444, 2006.

[11] Saksena, S., Subida, R., Buttner, L., Ahmed, L., “Indoor air pollution in coastal houses of Southern Philippines.” Indoor and Built Environment 16, 159–168, 2007.

[12] Fullerton, D.G., Semple, S., Kalambo, F., Suseno, A., Malamba, R., Henderson, G., Ayres, J.G., Gordon, S.B., “Biomass fuel use and indoor air pollution in homes in Malawi.” Occupational and Environmental Medicine 66, 777–783.

[13] Ogunjobi, K. O., He, Z., Kim, K. W., and Kim, Y. J.: “Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea”, Atmos. Environ., 38, 1313–1323, 2004.

[14] Dubovik, O., Holben, B. N, Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanr` e, D., and Slutsker, I.: “Variability of absorption and optical properties of key aerosol types observed in worldwide locations”, J. Atmos. Sci., 59, 590–608, 2002.

[15] Eck, T. F., Holben, B. N., Reid, J. S., Dubovic, O., Smirnov, A., O’Neil, N. T., Slutsker, I., and Kinne, S.: “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols”, J. Geophys. Res., 104(D24), 31 333–31 349, 1999.

[16] Kaufman, Y. J., Gitelson, A., Karnieli, A., Ganor, E., Fraser, R. S., Nakajima, T., Matoo, S., and Holben, B. N.: “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements”, Geophys. Res. Let., 99, 10 341–10 356, 1994.

[17] Reid, J. S., Eck, T. F., Christopher, S. A., Hobbs, P. V., and Holben, B. N. “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil”, J. Geophys. Res., 104(D22), 27 473–27 489, 1999.

[18] Eck, T. F., Holben, B. N., Dubovic, O., Smirnov, A., Slutsker, I., Lobert, J. M., and Ramanathan, V.: “Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998–2000”, J. Geophys. Res., 106, 28 555–28 566, 2001a.

[19] Eck, T. F., Holben, B. N., Ward, D. E., Dubovic, O., Reid, J. S., Smirnov, A., Mukelabai, M. M., Hsu, N. C., O’ Neil, N. T., and Slutsker, I.: “Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign”, J. Geophys. Res., 106(D4), 3425–3448, 2001b.

[20] Eck, T. F., Holben, B. N., Ward, D. E., et al.: “Variability of biomass burning aerosol optical characteristics in southern Africa during SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements”, J. Geophys. Res., 108(D13), 8477, doi:10.1029/2002JD002321, 2003.

[21] Keil, A. and Haywood, J. M.: “Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties”, J.Geophys. Res., 108(D13), 8467, doi:10.1029/2002JD002315, 2003.

[22] Kaskaoutis, D. G. and Kambezidis, H. D.: “Investigation on the wavelength dependence of the aerosol optical depth in the Athens area”, Q. J. R. Meteorol. Soc., 132, 2217–2234, 2006.

[23] Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovic, O., Eck, T. F., Slutsker, I., Pietras, C., and Halthore, R. N.: “Optical properties of atmospheric aerosol in Maritime Environments”, J Atmos. Sci., 59, 501–523, 2002.

[24] Smirnov, A., Holben, B. N., Dubovic, O., Fruin, R., Eck, T. F., and Slutsker, I.: “Maritime component in aerosol optical models derived from aerosol robotic network data”, J. Geophys. Res., 108(D1), 4033, doi:10.1029/2002JD002701, 2003.

[25] Eck, T. F., Holben, B. N., Dubovic, O., Smirnov, A., Goloub, P., Chen, H. B., Chatenet, B., Gomes, L., Zhang, X. Y., Tsay, S. C., Ji, Q., Giles, D., and Slutsker, I.: “Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific”, J. Geophys. Res., 110, D06202, doi:10.1029/2004JD005274, 2005.

[26] Rami, Y., Chhabra Abha, Pandya, M., “A study of spatio-temporal variations in Particulate Matter and Aerosol Optical Depth over Ahmedabad using field and satellite data”. Proceedings of the National Conference on ‘Transportation and Water Resource Engineering’ (NCTWE-2015), pp. 356-361, 2015.

[27] Rami, Y., Chhabra Abha, Pandya, M., “Remote sensing application to study ambient air quality over Ahmedabad. Multi-disciplinary Sustainable Engineering: Current and Future Trends” – Tekwani, Bhavsar & Modi (Eds), Taylor & Francis Group, London, ISBN 978-1-138-02845-6, 2016.

[28] Bhaskar, B. Vijay, and Vikram M. Mehta. "Atmospheric particulate pollutants and their relationship with meteorology in Ahmedabad." Aerosol Air Qual. Res 10.4 : 301-315, 2010.

[29] Raman, Ramya Sunder, S. Ramachandran, and Neeraj Rastogi. "Source identification of ambient aerosols over an urban region in western India." Journal of Environmental Monitoring 12.6 : 1330-1340, 2010.

[30] Solar Light Co. Inc., “Operational Manual of Microtops II Sun photometer,” Solar Light Co. Inc.

[31] LIDAR Image Database available at https://www-calipso.larc.nasa.gov

[32] Kulshrestha A, Satsangi G, Masih J, Taneja A. “Concentrations of PM2.5 and PM10 particle and seasonal variations in urban and rural environment of Agra, India.”, Sci Total Environ;407:6196-204, 2009.

[33] Mantis J, Chaloulakou A, Samara S. “PM10-bound polycyclic aromatic hydrocarbons(PAHs) in the greater area of Athens, Greece.”, Chemosphere ;59:593-604, 2005.

[34] Kulshrestha A, Satsangi G, Masih J, Taneja A. “Metal Concentrations of PM2.5 and PM10 particle and seasonal variations in urban and rural environment of Agra, India.”, Sci Total Environ; 407:6196-204., 2009.

[35] Habil M, Taneja A. “Children’s exposure to indoor particulate matter in naturally ventilated schools in India.”, Indoor Built Environ.

[36] Saha A, Moorthy KK. “Impact of precipitation on aerosol spectral optical depth and retrieved size distributions: a case study.”, J Appl Meteor; 43:902-14, 2004.

[37] Kumar AV. “Monitoring and modeling of ambient air quality at two traffic junctions in Mumbai.” Ph.D. thesis submitted to Indian Institute of Technology, Bombay; 1998.

[38] Dhananjay K. Deshmukh & Manas K. Deb & Stelyus L. Mkoma. “Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India”, Air Qual Atmos Health, 6:259–276, 2013.

[39] Shahir Masri, Choong-Min Kang, Petros Koutrakis. “Composition and Sources of Fine and Coarse Particles Collected during 2002–2010 in Boston, MA”. J Air Waste Manag Assoc. 2015 Mar; 65(3): 287–297., 2015.

[40] Holben, B. N., Tanre, D., Smirnov, A., Eck, T. F., Slutsker, I., et al.: “An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET,” J. Geophys. Res., 106, 12 067–12 097, 2001.

[41] Angstrom, A. K.: “On the atmospheric transmission of sun radiation and on the dust in the air”, Geogr. ANN., 12, 130–159, 1929.

[42] Kirti Soni , Sachchidanand Singh , Tarannum Bano , R. S. Tanwar & Shambhu Nath, “Wavelength Dependence of the Aerosol Angstrom Exponent and Its Implications Over Delhi, India,” Aerosol Science and Technology, 45:12, 1488-1498, 2011.

[43] King, M. D. and Byrne, D. M.: “A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer”, J. Atmos. Sci., 33, 2242–2251, 1976.

[44] O’Neill, N. and Royer, A.: “Extraction of bimodal aerosol size distribution radii from spectral and angular slope Angstrom coefficients”, Appl. Opt., 32, 1642–1645, 1993.

[45] O’Neill, N. T., Dubovic, O., and Eck, T. F.: “Modified Angstrom exponent for the characterization of submicrometer aerosols”, Appl. Opt., 40(15), 2368–2375, 2001a.

[46] O’Neill, N. T., Eck, T. F., Holben, B. N., Smirnov, A., and Dubovic, O.: “Bimodal size distribution influences on the variation of Angstrom derivates in spectral and optical depth space”, J. Geophys. Res., 106(D9), 9787–9806, 2001b.

[47] O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman, S.: “Spectral discrimination of coarse and fine mode optical depth”, J. Geophys. Res., 198(D17), 4559, 2003.

[48] Kaskaoutis, D. G., Kambezidis, H. D., Adamopoulos, A. D., and Kassomenos, P. A.: “Comparison between experimental data and modeling estimates of atmospheric optical depth over Athens, Greece”, J. Atmos. Solar Terr. Phys., 68, 1167–1178, 2006.

[49] D. G. Kaskaoutis, H. D. Kambezidis, N. Hatzianastassiou, P. G. Kosmopoulos, and K. V. S. Badarinath “Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites”

[50] Ghude, S. D., D. M. Chate, C. Jena, G. Beig, R. Kumar, M. C. Barth, G. G. Pfister, S. Fadnavis, and P. Pithani, “Premature mortality in India due to PM2.5 and ozone exposure”, Geophys. Res. Lett., 43, 2016.