# Journal of Advances in Applied Mathematics

### Weighted Anisotropic Morrey Spaces Estimates for Anisotropic Maximal Operators

Download PDF (580.7 KB) PP. 143 - 150 Pub. Date: July 31, 2017

### Author(s)

**Ferit Gürbüz**^{*}

Department of Mathematics, Faculty of Science, Ankara University

### Abstract

### Keywords

_{p}weights

### References

[1] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc., vol. 43, pp. 126–166, 1938.

[2] D. Adams, Morrey spaces. Lecture Notes in Applied and Numerical Harmonic Analysis. Birkh?user/Springer, 2015.

[3] F. Gurbuz, “Weighted morrey and weighted fractional sobolev-morrey spaces estimates for a large class of pseudo-differential operators with smooth symbols,” J. Pseudo-Differ. Oper. Appl., vol. 7, pp. 595–607, 2016.

[4] Y. Komori and S. Shirai, “Weighted morrey spaces and a singular integral operator,” Math. Nachr., vol. 282, pp. 219–231, 2009.

[5] W. Rudin, Real and complex analysis. McGraw-Hill, New York, 1966.

[6] R. A. Hunt, B. Muchenoupt, and R. L. Wheeden, “Weighted norm inequalities for the conjugate function and hilbert transform,” Trans. Amer. Math. Soc., vol. 176, pp. 227–251, 1973.

[7] V. M. Kokilashvili and J. Rakosnik, “Weighted inequalities for anisotropic maximal functions,” Casopis pro pestovani matematiky, vol. 110.

[8] R. R. Coifman and C. Fefferman, “Weighted norm inequalities for maximal functions and singular integrals,” Studia Math., vol. 51, pp. 241–250, 1974.

[9] C. Fefferman and E. M. Stein, “Some maximal inequalities,” Amer. J. Math., vol. 93, pp. 107–115, 1971.